Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
1.
Molecules ; 29(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611746

RESUMO

Spodoptera frugiperda, the fall armyworm (FAW), is a highly invasive polyphagous insect pest that is considered a source of severe economic losses to agricultural production. Currently, the majority of chemical insecticides pose tremendous threats to humans and animals besides insect resistance. Thus, there is an urgent need to develop new pest management strategies with more specificity, efficiency, and sustainability. Chitin-degrading enzymes, including chitinases, are promising agents which may contribute to FAW control. Chitinase-producing microorganisms are reported normally in bacteria and fungi. In the present study, Serratia marcescens was successfully isolated and identified from the larvae of Spodoptera frugiperda. The bacterial strain NRC408 displayed the highest chitinase enzyme activity of 250 units per milligram of protein. Subsequently, the chitinase gene was cloned and heterologously expressed in E. coli BL21 (DE3). Recombinant chitinase B was overproduced to 2.5-fold, driven by the T7 expression system. Recombinant chitinase B was evaluated for its efficacy as an insecticidal bioagent against S. frugiperda larvae, which induced significant alteration in subsequent developmental stages and conspicuous malformations. Additionally, our study highlights that in silico analyses of the anticipated protein encoded by the chitinase gene (ChiB) offered improved predictions for enzyme binding and catalytic activity. The effectiveness of (ChiB) against S. frugiperda was evaluated in laboratory and controlled field conditions. The results indicated significant mortality, disturbed development, different induced malformations, and a reduction in larval populations. Thus, the current study consequently recommends chitinase B for the first time to control FAW.


Assuntos
Quitinases , Inseticidas , Animais , Humanos , Quitinases/genética , Quitinases/farmacologia , Larva , Serratia marcescens/genética , Zea mays , Spodoptera , Escherichia coli , Clonagem Molecular , Produtos Agrícolas , Inseticidas/farmacologia
2.
Exp Biol Med (Maywood) ; 248(22): 2053-2061, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38057942

RESUMO

Chitin is a biopolymer profusely present in nature and of pivotal importance as a structural component in cells. It is degraded by chitinases, enzymes naturally produced by different organisms. Chitinases are proteins enrolled in many cellular mechanisms, including the remodeling process of the fungal cell wall, the cell growth process, the autolysis of filamentous fungi, and cell separation of yeasts, among others. These enzymes also have properties with different biotechnological applications. They are used to produce polymers, for biological control, biofilm formation, and as antitumor and anti-inflammatory target molecules. Chitinases are classified into different glycoside hydrolase (GH) families and are widespread in microorganisms, including viruses. Among them, the GH18 family is highly predominant in the viral genomes, being present and active enzymes in baculoviruses and nucleocytoplasmic large DNA viruses (NCLDV), especially chloroviruses from the Phycodnaviridae family. These viral enzymes contain one or more GH domains and seem to be involved during the viral replication cycle. Curiously, only a few DNA viruses have these enzymes, and studying their properties could be a key feature for biological and biotechnological novelties. Here, we provide an overview of viral chitinases and their probable function in viral infection, showing evidence of at least two distinct origins for these enzymes. Finally, we discuss how these enzymes can be applied as biotechnological tools and what one can expect for the coming years on these GHs.


Assuntos
Quitinases , Humanos , Quitinases/química , Quitinases/genética , Quitinases/metabolismo , Proteínas , Quitina/química , Quitina/metabolismo , Biotecnologia , Fungos
3.
J Cell Mol Med ; 27(24): 4202-4214, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37902124

RESUMO

Chitinase 3-like 1 (CHI3L1 or YKL40) is a secreted glycoprotein highly expressed in advanced stages of several cancer types, including prostate cancer (PCa). Impacts of genetic variants of CHI3L1 on PCa development have not yet been investigated. The most common well-studied genetic variations are single-nucleotide polymorphisms (SNPs). Therefore, the objective of this study was to explore associations of CHI3L1 SNPs with both the susceptibility to PCa and its clinicopathological development. Three promoter SNPs, rs6691378 (-1371, G>A), rs10399805 (-247, G>A) and rs4950928 (-131, C>G), and one non-synonymous SNP, rs880633 (+2950, T>C), were analysed using a TaqMan allelic discrimination assay for genotyping in a cohort of 701 PCa patients and 701 healthy controls. Results indicated that there were no significant associations of PCa susceptibility with these four CHI3L1 SNPs. However, among elderly PCa patients (aged >65 years), it was observed that polymorphic variants (GA + AA) of CHI3L1 rs6691378 and 10399805 were significantly linked to reduced risks of several clinicopathological characteristics, including a high Gleason grade, advanced pathologic T stage and tumour cell invasion. Moreover, analyses of The Cancer Genome Atlas database revealed that CHI3L1 expression levels were elevated in PCa tissues compared with normal tissues. Interestingly, higher CHI3L1 expression levels were found to be associated with longer progression-free survival rates in PCa patients. Our findings indicated that levels of CHI3L1 may influence the progression of PCa, and the rs6691378 and 10399805 SNP genetic variants of CHI3L1 are linked to the clinicopathological development of PCa within a Taiwanese population.


Assuntos
Quitinases , Neoplasias da Próstata , Idoso , Humanos , Masculino , Alelos , Quitinases/genética , Predisposição Genética para Doença , Glicoproteínas/genética , Polimorfismo de Nucleotídeo Único/genética , Neoplasias da Próstata/genética
4.
Curr Microbiol ; 80(11): 360, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37796346

RESUMO

The chitinolytic bacterium, Chitiniphilus shinanonensis SAY3T was examined to characterize its chitin-degrading enzymes in view of its potential to convert biomass chitin into useful saccharides. A survey of the whole-genome sequence revealed 49 putative genes encoding polypeptides that are thought to be related to chitin degradation. Based on an analysis of the relative quantity of each transcript and an assay for chitin-degrading activity of recombinant proteins, a chitin degradation system driven by 19 chitinolytic enzymes was proposed. These include sixteen endo-type chitinases, two N-acetylglucosaminidases, and one lipopolysaccharide monooxygenase that catalyzes the oxidative cleavage of glycosidic bonds. Among the 16 chitinases, ChiL was characterized by its remarkable transglycosylation activity. Of the two N-acetylglucosaminidases (ChiI and ChiT), ChiI was the major enzyme, corresponding to > 98% of the total cellular activity. Surprisingly, a chiI-disrupted mutant was still able to grow on medium with powdered chitin or GlcNAc dimer. However, its growth rate was slightly lower compared to that of the wild-type SAY3. This multi-enzyme machinery composed of various types of chitinolytic enzymes may support SAY3 to efficiently utilize native chitin as a carbon and energy source and may play a role in developing an enzymatic process to decompose and utilize abundant chitin at the industrial scale.


Assuntos
Betaproteobacteria , Quitinases , Quitina/metabolismo , Proteínas Recombinantes/genética , Quitinases/genética , Quitinases/metabolismo
5.
Mol Plant Pathol ; 24(9): 1033-1046, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37448165

RESUMO

Lipase is involved in lipid hydrolysis, which is related to nematodes' energy reserves and stress resistance. However, the role of lipases in Bursaphelenchus xylophilus, a notorious plant-parasitic nematode responsible for severe damage to pine forest ecosystems, remains largely obscure. Here, we characterized a class III lipase as a candidate effector and named it BxLip-3. It was transcriptionally up-regulated in the parasitic stages of B. xylophilus and specifically expressed in the oesophageal gland cells and the intestine. In addition, BxLip-3 suppressed cell death triggered by the pathogen-associated molecular patterns PsXEG1 and BxCDP1 in Nicotiana benthamiana, and its Lipase-3 domain is essential for immunosuppression. Silencing of the BxLip-3 gene resulted in a delay in disease onset and increased the activity of antioxidant enzymes and the expression of pathogenesis-related (PR) genes. Plant chitinases are thought to be PR proteins involved in the defence system against pathogen attack. Using yeast two-hybrid and co-immunoprecipitation assays, we identified two class I chitinases in Pinus thunbergii, PtChia1-3 and PtChia1-4, as targets of BxLip-3. The expression of these two chitinases was up-regulated during B. xylophilus inoculation and inhibited by BxLip-3. Overall, this study illustrated that BxLip-3 is a crucial virulence factor that plays a critical role in the interaction between B. xylophilus and host pine.


Assuntos
Quitinases , Pinus , Tylenchida , Animais , Xylophilus , Ecossistema , Quitinases/genética , Pinus/parasitologia , Tylenchida/genética , Doenças das Plantas/parasitologia
6.
Molecules ; 27(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36234944

RESUMO

Cross-linking net aggregates of thermolabile thaumatin-like proteins (TLPs) and chitinases (CHIs) are the primary source of haze in white wines. Although bentonite fining is still routinely used in winemaking, alternative methods to selectively remove haze proteins without affecting wine organoleptic properties are needed. The availability of pure TLPs and CHIs would facilitate the research for the identification of such technological advances. Therefore, we proposed the usage of recombinant TLP (rTLP) and CHI (rCHI), expressed by Komagataella phaffii, as haze-protein models, since they showed similar characteristics (aggregation potential, melting point, functionality, glycosylation levels and bentonite adsorption) to the native-haze proteins from Vitis vinifera. Hence, rTLP and rCHI can be applied to study haze formation mechanisms on a molecular level and to explore alternative fining methods by screening proteolytic enzymes and ideal adsorptive resins.


Assuntos
Quitinases , Vitis , Vinho , Bentonita/metabolismo , Quitinases/genética , Quitinases/metabolismo , Aditivos Alimentares/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vitis/metabolismo , Vinho/análise
7.
Int J Biol Macromol ; 223(Pt B): 1641-1652, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36273547

RESUMO

Endochitinase is a natural extracellular protein in Trichoderma longibrachiatum T6, which can degrade the eggshell of Heterodera avenae significantly, however the related genes that coding this protein was rarely characterized. In the present study, the endochitinase 18-5 gene (T6-Echi18-5) of T. longibrachiatum T6 was cloned and sequenced. The expression level of T6-Echi18-5 gene in T. longibrachiatum T6 was induced and increased after the H. avenae cysts inoculation. The full-length cDNA sequence of T6-Echi18-5 was 1671 bp that contained an ORF of 1275 bp, corresponding to 424 amino acids with a 45.9 kDa molecular weight. A single band of 60.04 kDa was detected and identified using SDS-PAGE and Western blot analysis after transferring the T6-Echi18-5 gene to Escherichia coli BL21 Rosetta (DE3). The concentration of purified recombinant T6-Echi18-5 protein was 1.53 mg·ml-1, and the optimal temperature and pH were 50 °C and 5.0, respectively. The eggshell and content were dissolved and exuded from 4 to10 days after treatment with the purified recombinant T6-Echi18-5 protein. The relative inhibition rate of eggs hatching was 86.79 % at 12 days after treatment. Our study demonstrated the key role of T6-Echi18-5 gene in degrading the H. avenae eggshell and inhibiting the eggs hatching.


Assuntos
Quitinases , Hypocreales , Trichoderma , Quitinases/genética , Trichoderma/metabolismo , Antinematódeos , Hypocreales/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Am J Clin Pathol ; 158(4): 521-529, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35913110

RESUMO

OBJECTIVES: We aimed to evaluate the expression pattern of chitinase 3-like 2 (CHI3L2) in the tumor core and peritumoral brain zone (PBZ) of newly diagnosed glioblastoma (GBM) in recurrent tumors and its association with patient prognosis. METHODS: The study was conducted on three sample sets derived from different patient cohorts. Messenger RNA (mRNA) expression of CHI3L2 in the tumor core and PBZ (n = 34) compared with control (n = 20) tissues was studied by quantitative polymerase chain reaction in sample set 1. Sample set 2 included 19 paired, primary-recurrent GBM tissues. Sample set 3 comprised 82 GBM tissues of patients with treatment and follow-up information. Immunohistochemistry (IHC) was performed on all three sample sets. RESULTS: mRNA expression of CHI3L2 was significantly higher in the tumor core and PBZ compared with control (P < .0001). By IHC, CHI3L2 showed strong cytoplasmic staining in tumor cells. Recurrent tumors had a higher expression of CHI3L2 compared with primary tumors (P = .007). Survival analysis showed CHI3L2 expression was associated with shorter overall survival (P = .034) and progression-free survival (P = .010), which was in line with The Cancer Genome Atlas cohort (P = .043). CONCLUSIONS: High expression of CHI3L2 in the tumor core and PBZ, as well as its association with tumor recurrence and poor patient prognosis, suggests it might be contributing to tumor spread and recurrence.


Assuntos
Neoplasias Encefálicas , Quitinases , Glioblastoma , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Quitinases/genética , Glioblastoma/diagnóstico , Glioblastoma/genética , Humanos , Recidiva Local de Neoplasia/metabolismo , Prognóstico , RNA Mensageiro
9.
Front Immunol ; 13: 891220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967383

RESUMO

Ym1 is a rodent-specific chitinase-like protein (CLP) lacking catalytic activity, whose cellular origins are mainly macrophages, neutrophils and other cells. Although the detailed function of Ym1 remains poorly understood, Ym1 has been generally recognized as a fundamental feature of alternative activation of macrophages in mice and hence one of the prevalent detecting targets in macrophage phenotype distinguishment. Studies have pointed out that Ym1 may have regulatory effects, which are multifaceted and even contradictory, far more than just a mere marker. Allergic lung inflammation, parasite infection, autoimmune diseases, and central nervous system diseases have been found associations with Ym1 to varying degrees. Thus, insights into Ym1's role in diseases would help us understand the pathogenesis of different diseases and clarify the genuine roles of CLPs in mammals. This review summarizes the information on Ym1 from the gene to its expression and regulation and focuses on the association between Ym1 and diseases.


Assuntos
Doença , Lectinas , Macrófagos , beta-N-Acetil-Hexosaminidases , Animais , Quitinases/genética , Quitinases/imunologia , Doença/genética , Imunidade/genética , Imunidade/imunologia , Lectinas/genética , Lectinas/imunologia , Macrófagos/imunologia , Mamíferos/genética , Mamíferos/imunologia , Camundongos , Neutrófilos/imunologia , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/imunologia
10.
Anticancer Res ; 42(8): 4119-4127, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35896264

RESUMO

BACKGROUND/AIM: The cumulative cancerous rate of colitis-associated cancer (CAC) has increased exponentially in patients with ulcerative colitis (UC). We have investigated the factors involved in the carcinogenic processes of CAC among UC patients. PATIENTS AND METHODS: A total of 42 UC patients who underwent surgical treatments between January 2001 and December 2010 at Kurume University Hospital (Fukuoka, Japan) were enrolled. We conducted this study using 3 cases of CAC out of 42 UC cases and 1 case of colorectal cancer. cDNA microarray analyses were performed using normal, inflamed, and cancerous tissues from surgical CAC specimens and protein expression was confirmed by immunohistochemical analyses. RESULTS: cDNA microarray revealed 32 genes that were dominantly expressed in tumorous regions of CAC. Gene ontology analysis revealed that these genes were involved in inflammatory responses and cytokine-cytokine receptor interactions. Chitinase 3-like1 (CHI3L1), carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6), and Claudin-2 (CLND2) were selected from CAC-related genes as candidate molecules. Immunostaining revealed strong expression of each protein in cancerous regions. CONCLUSION: In this study, we identified CAC-related genes and found that CHI3L1, CEACAM6, and CLND2 were expressed in patient samples. All the above genes were associated with adherent invasive Escherichia coli (AIEC), which suggested that these molecules are likely involved in AIEC infection. Further analyses would be required to reveal unknown mechanisms of CAC-related genes in the tumor microenvironment.


Assuntos
Antígenos CD/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteína 1 Semelhante à Quitinase-3/metabolismo , Quitinases , Claudinas/metabolismo , Colite Ulcerativa , Antígeno Carcinoembrionário/genética , Carcinogênese , Carcinógenos , Moléculas de Adesão Celular/genética , Quitinases/genética , Claudina-2 , Colite Ulcerativa/patologia , Proteínas Ligadas por GPI/metabolismo , Humanos , Microambiente Tumoral
11.
Artigo em Inglês | MEDLINE | ID: mdl-35017045

RESUMO

Chitinases are hydrolytic enzymes that play important roles in chitin degradation during the insect development process, and thus are considered as the potential targets for pest management. Here, we identified and characterized the group VII chitinase gene from health pest Musca domestica (MdCht2). We found that MdCht2 was 1932 bp in length with an open reading frame of 1530 bp, which encodes a polypeptide of 509 amino acid residues. Phylogenetic analysis showed that MdCht2 gene was homologs with other closed insects, and belong to the group VII chitinases. Moreover, Real-time PCR analysis indicated that MdCht2 mRNA was highly expressed in pupa stage, as well as in integument and trachea. However, RNAi-mediated knockdown of MdCht2 resulted in high mortality rates and abnormal eclosion. Therefore, we hypothesized that MdCht2 was a crucial gene required for housefly development, which was supported by the transcription level of MdCht2 could be induced by 20-hydroxyecdysone (20E), and the dsMdCht2 could resulted in decrease of the chitinase activity and increase of the chitin content. Taken together, our findings suggested that MdCht2 regulated the chitin content via chitinases, thereby leading to abnormal development. Our results provide a potential target for M. domestica management.


Assuntos
Quitinases , Moscas Domésticas , Mariposas , Animais , Quitinases/genética , Quitinases/metabolismo , Moscas Domésticas/genética , Moscas Domésticas/metabolismo , Filogenia , Pupa
12.
Genes Genomics ; 43(12): 1497-1502, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34762288

RESUMO

BACKGROUND: Chitinase is a multi-functional enzyme that catalyzes the hydrolysis of ß-1,4-linkages between N-acetylglucosamines (GlcNAc) in chitin. Recent studies imply that earthworm chitinase is implicated in self-defense immunity against chitin-containing pathogens. However, a direct relationship of earthworm chitinase with innate immunity has not yet been established. OBJECTIVE: In this study, earthworm (Eisenia andrei) chitinase expression was examined following bacterial challenge by Bacillus subtilis. METHODS: RNA sequencing (RNA-seq) and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used to quantitatively evaluate mRNA expression changes in response to bacterial stimulation. RESULTS: Multiple chitinase-related mRNAs were found to be upregulated, among which EaChi3, EaChi4, and EaChi2 were upregulated by approximately eightfold, eightfold, and 2.5-fold, respectively. This strongly suggested that earthworm chitinases may act as inducible humoral effectors in earthworm innate immunity. The primary structures of all three chitinases contained an N-terminal glycol_18 domain with two chitin-binding and chitin-catalyzing domains, and a C-terminal proline, glycine, serine, threonine (PGST)-rich domain. In addition, EaChi2 had a chitin-binding peritrophin-A domain at the end of the C-terminus with 5 cysteine residues possibly contributing two intradomain disulfide bonds. Multiple sequence alignment of the catalytic domain centers of glycol_18 domain displayed highly conserved chitin-binding and chitin-catalyzing domains in which three essential amino acid residues (D, D, E) for catalyzing activity are well conserved except EaChi4. The critical glutamic acid (E) residue was substituted for glutamine (Q) in EaChi4 indicating that it is devoid of catalytic activity. CONCLUSIONS: To our knowledge, this is the first report providing direct evidence that multiple earthworm chitinases are bacteria-responsive, strongly suggesting that earthworm chitinases are inducible humoral effectors in earthworm innate immunity. In addition, our results possibly suggest that earthworm EaChi4 may function as a pattern recognition molecule modulating the downstream immune pathway.


Assuntos
Quitinases/genética , Imunidade Inata , Oligoquetos/genética , Animais , Bacillus subtilis/patogenicidade , Domínio Catalítico , Quitinases/química , Quitinases/metabolismo , Oligoquetos/enzimologia , Oligoquetos/imunologia , Oligoquetos/microbiologia , Regulação para Cima
13.
Biomed Res Int ; 2021: 8357585, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395626

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is the most common and aggressive primary malignancy in adults with high aggression. The prognosis of GBM patients is poor. There is a critical need for novel biomarkers for the prognosis and therapy of GBM. METHODS: Differentially expressed genes (DEGs) in GBM were screened using TCGA cohort. Univariate and multivariate Cox regression analyses were performed on DEGs to identify the optimal prognosis-related genes. qRT-PCR was performed to verify the result. RESULTS: A total of 5216 DEGs, including 2785 upregulated and 2458 downregulated genes, were obtained. Enrichment analysis revealed that these DEGs were mainly involved in the p53 signaling pathway and cell cycle, immune response, and MAPK signaling pathways. Moreover, the top 50 DEGs were associated with drug resistance or drug sensitivity. Prognosis analysis revealed that GBM patients with a high expression of CD163 and CHI3L2 had a poor overall survival, prognosis-free survival, and disease-specific survival. The univariate and multivariate analyses revealed that CD163 and age were independent factors affecting the prognosis of GBM patients. A validation study revealed that CD163 was upregulated in GBM tissues and associated with poor overall survival. Moreover, further analysis revealed that CD163 showed significant correlation with immune cells, immune biomarkers, chemokines, and chemokine receptors. We also identified several CD163-associated kinase, miRNA, and transcription factor targets in GBM, including LCK, miR-483, and ELF1. CONCLUSIONS: In conclusion, our study suggested CD163 as a prognostic biomarker and associated it with immune infiltration in GBM.


Assuntos
Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Quitinases/genética , Perfilação da Expressão Gênica/métodos , Glioblastoma/genética , Receptores de Superfície Celular/genética , Regulação para Cima , Fatores Etários , Neoplasias Encefálicas/imunologia , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Glioblastoma/imunologia , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , MicroRNAs/genética , Mutação , Proteínas Nucleares/genética , Prognóstico , Mapas de Interação de Proteínas , Análise de Sobrevida , Fatores de Transcrição/genética
14.
Microbiol Spectr ; 9(1): e0051121, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34346756

RESUMO

Entamoeba histolytica, a protozoan parasite, causes amoebiasis in humans. Amoebiasis transmission is solely mediated by chitin-walled cysts, which are produced in the large intestine of humans from proliferative trophozoites by a cell differentiation process called encystation. Resistance to environmental stresses, an essential characteristic for transmission, is attributed to the cyst wall, which is constructed from chitin and several protein components, including chitinase. Chitinase may play a key role in cyst wall formation; however, this has not been confirmed. Here, to elucidate the physiological role of chitinase during Entamoeba encystation, we identified a new chitinase inhibitor, 2,6-dichloro-4-[2-(1-piperazinyl)-4-pyridinyl]-N-(1,3,5-trimethyl-1H-pyrazol-4-yl)-benzenesulfonamide, by recombinant-Entamoeba chitinase-based screening of 400 Pathogen Box chemicals. This compound dose dependently inhibited native chitinase associated with Entamoeba invadens encystation, a model for E. histolytica encystation, with an 50% inhibitory concentration (IC50) of ∼0.6 µM, which is comparable to the IC50s (0.2 to 2.5 µM) for recombinant E. histolytica and E. invadens chitinases. Furthermore, the addition of this compound to E. invadens encystation-inducing cultures increased the generation of cyst walls with an abnormal shape, the most characteristic of which was a "pot-like structure." A similar structure also appeared in standard culture, but at a far lower frequency. These results indicate that chitinase inhibition increases the number of abnormal encysting cells, thereby significantly reducing the efficiency of cyst formation. Transmission electron microscopy showed that compound-treated encysting cells formed an abnormally loose cyst wall and an unusual gap between the cyst wall and cell membrane. Hence, Entamoeba chitinase is required for the formation of mature round cysts. IMPORTANCE Amoebiasis is caused by Entamoeba histolytica infection and is transmitted by dormant Entamoeba cells or cysts. Cysts need to be tolerant to severe environmental stresses faced outside and inside a human host. To confer this resistance, Entamoeba parasites synthesize a wall structure around the cell during cyst formation. This cyst wall consists of chitin and several protein components, including chitinase. The physiological roles of these components are not fully understood. Here, to elucidate the role of chitinase during cyst formation, we identified a new chitinase inhibitor by screening a library of 400 compounds. Using this inhibitor, we showed that chitinase inhibition causes the formation of abnormal cyst walls, the most characteristic of which is a "pot-like structure." This results in decreased production of mature cysts. Chitinase is therefore required for Entamoeba to produce mature cysts for transmission to a new host.


Assuntos
Quitinases/metabolismo , Entamoeba/enzimologia , Entamebíase/parasitologia , Proteínas de Protozoários/metabolismo , Quitinases/genética , Cistos/parasitologia , Entamoeba/genética , Entamoeba/crescimento & desenvolvimento , Entamoeba/ultraestrutura , Humanos , Microscopia Eletrônica de Transmissão , Proteínas de Protozoários/genética
15.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203467

RESUMO

Chitinases belong to the evolutionarily conserved glycosyl hydrolase family 18 (GH18). They catalyze degradation of chitin to N-acetylglucosamine by hydrolysis of the ß-(1-4)-glycosidic bonds. Although mammals do not synthesize chitin, they possess two enzymatically active chitinases, i.e., chitotriosidase (CHIT1) and acidic mammalian chitinase (AMCase), as well as several chitinase-like proteins (YKL-40, YKL-39, oviductin, and stabilin-interacting protein). The latter lack enzymatic activity but still display oligosaccharides-binding ability. The physiologic functions of chitinases are still unclear, but they have been shown to be involved in the pathogenesis of various human fibrotic and inflammatory disorders, particularly those of the lung (idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, sarcoidosis, and asthma) and the gastrointestinal tract (inflammatory bowel diseases (IBDs) and colon cancer). In this review, we summarize the current knowledge about chitinases, particularly in IBDs, and demonstrate that chitinases can serve as prognostic biomarkers of disease progression. Moreover, we suggest that the inhibition of chitinase activity may be considered as a novel therapeutic strategy for the treatment of IBDs.


Assuntos
Quitinases/metabolismo , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Animais , Proteína 1 Semelhante à Quitinase-3/genética , Proteína 1 Semelhante à Quitinase-3/metabolismo , Quitinases/genética , Humanos , Inflamação/genética , Doenças Inflamatórias Intestinais/genética
16.
Hum Cell ; 34(5): 1558-1568, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34164774

RESUMO

Resistance to chemotherapy drugs is a major factor affecting the surgical outcome and prognosis of osteosarcoma patients. Circular RNAs (circRNAs) play an important role in tumor resistance to chemotherapy. In the present study, we aimed to investigate the role and mechanism of circRNA circ-chitinase 3-like 1.2 (CHI3L1.2) in resistance to cisplatin chemotherapy in osteosarcoma. We found that circ-CHI3L1.2 levels were higher in cisplatin-resistant cells than in their parent cells. circ-CHI3L1.2 knockdown decreased the half-maximal inhibitory concentration (IC50) of cisplatin and the expression levels of P-glycoprotein (P-gp), multidrug-resistance protein 1 (MRP1), and glutathione-S-transferase Pi1 (GSTP1), and promoted apoptosis of cisplatin-resistant osteosarcoma cells. In addition, circ-CHI3L1.2 knockdown induced mesenchymal to epithelial transition (MET) and suppressed cell migration and invasion. The competitive endogenous RNA (ceRNA) mechanism indicated that circ-CHI3L1.2 targets the micro-RNA (miR)-340-5p-lysophosphatidic acid acyltransferase ß (LPAATß) axis, and inhibition of miR-340-5p alleviates the effect of circ-CHI3L1.2 knockdown. In conclusion, circ-CHI3L1.2 levels were increased in cisplatin-resistant osteosarcoma cells and circ-CHI3L1.2 knockdown sensitized cisplatin-resistant osteosarcoma cells to cisplatin through the miR-340-5p-LPAATß axis.


Assuntos
Aciltransferases/genética , Aciltransferases/metabolismo , Antineoplásicos/farmacologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Proteína 1 Semelhante à Quitinase-3/fisiologia , Quitinases/fisiologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Osteossarcoma/genética , Osteossarcoma/patologia , Linhagem Celular Tumoral , Proteína 1 Semelhante à Quitinase-3/genética , Quitinases/genética , Humanos
17.
Sci Rep ; 11(1): 7570, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828170

RESUMO

Although pancreatic ductal adenocarcinoma (PDAC) survival is poor, there are differences in patients' response to the treatments. Detection of predictive biomarkers explaining these differences is of the utmost importance. In a recent study two genetic markers (CD44-rs353630 and CHI3L2-rs684559) were reported to be associated with survival after PDAC resection. We attempted to replicate the associations in 1856 PDAC patients (685 resected with stage I/II) from the PANcreatic Disease ReseArch (PANDoRA) consortium. We also analysed the combined effect of the two genotypes in order to compare our results with what was previously reported. Additional stratified analyses considering TNM stage of the disease and whether the patients received surgery were also performed. We observed no statistically significant associations, except for the heterozygous carriers of CD44-rs353630, who were associated with worse OS (HR = 5.01; 95% CI 1.58-15.88; p = 0.006) among patients with stage I disease. This association is in the opposite direction of those reported previously, suggesting that data obtained in such small subgroups are hardly replicable and should be considered cautiously. The two polymorphisms combined did not show any statistically significant association. Our results suggest that the effect of CD44-rs353630 and CHI3L2-rs684559 cannot be generalized to all PDAC patients.


Assuntos
Carcinoma Ductal Pancreático/genética , Quitinases/genética , Receptores de Hialuronatos/genética , Neoplasias Pancreáticas/genética , Idoso , Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/mortalidade , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/mortalidade , Polimorfismo de Nucleotídeo Único , Neoplasias Pancreáticas
18.
Am J Respir Cell Mol Biol ; 64(5): 629-640, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33662226

RESUMO

Deficiency of ASM (acid sphingomyelinase) causes the lysosomal storage Niemann-Pick disease (NPD). Patients with NPD type B may develop progressive interstitial lung disease with frequent respiratory infections. Although several investigations using the ASM-deficient (ASMKO) mouse NPD model revealed inflammation and foamy macrophages, there is little insight into the pathogenesis of NPD-associated lung disease. Using ASMKO mice, we report that ASM deficiency is associated with a complex inflammatory phenotype characterized by marked accumulation of monocyte-derived CD11b+ macrophages and expansion of airspace/alveolar CD11c+ CD11b- macrophages, both with increased size, granularity, and foaminess. Both the alternative and classical pathways were activated, with decreased in situ phagocytosis of opsonized (Fc-coated) targets, preserved clearance of apoptotic cells (efferocytosis), secretion of Th2 cytokines, increased CD11c+/CD11b+ cells, and more than a twofold increase in lung and plasma proinflammatory cytokines. Macrophages, neutrophils, eosinophils, and noninflammatory lung cells of ASMKO lungs also exhibited marked accumulation of chitinase-like protein Ym1/2, which formed large eosinophilic polygonal Charcot-Leyden-like crystals. In addition to providing insight into novel features of lung inflammation that may be associated with NPD, our report provides a novel connection between ASM and the development of crystal-associated lung inflammation with alterations in macrophage biology.


Assuntos
Glicoproteínas/imunologia , Lisofosfolipase/imunologia , Macrófagos Alveolares/imunologia , Macrófagos/imunologia , Doença de Niemann-Pick Tipo A/imunologia , Doença de Niemann-Pick Tipo B/imunologia , Pneumonia/imunologia , Esfingomielina Fosfodiesterase/imunologia , Animais , Antígenos CD11/genética , Antígenos CD11/imunologia , Antígeno CD11b/genética , Antígeno CD11b/imunologia , Tamanho Celular , Quitinases/genética , Quitinases/imunologia , Modelos Animais de Doenças , Eosinófilos/imunologia , Eosinófilos/patologia , Feminino , Expressão Gênica , Glicoproteínas/genética , Humanos , Lectinas/genética , Lectinas/imunologia , Pulmão/imunologia , Pulmão/patologia , Lisofosfolipase/genética , Macrófagos/patologia , Macrófagos Alveolares/patologia , Masculino , Camundongos , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/patologia , Doença de Niemann-Pick Tipo A/enzimologia , Doença de Niemann-Pick Tipo A/genética , Doença de Niemann-Pick Tipo A/patologia , Doença de Niemann-Pick Tipo B/enzimologia , Doença de Niemann-Pick Tipo B/genética , Doença de Niemann-Pick Tipo B/patologia , Fagocitose , Pneumonia/enzimologia , Pneumonia/genética , Pneumonia/patologia , Esfingomielina Fosfodiesterase/deficiência , Esfingomielina Fosfodiesterase/genética , Equilíbrio Th1-Th2/genética , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/imunologia
19.
Pest Manag Sci ; 77(5): 2337-2349, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33421295

RESUMO

BACKGROUND: Pigeonpea, Cajanus cajan is one of the economically important legume food crops and a major source of dietary proteins. Management of pod borer, Helicoverpa armigera has been prominent among crop improvement programs. Lack of resistance sources in the cultivated germplasm and crossing incompatibility with pod borer-resistant wild relatives have prompted biotechnological interventions. Identification and exploitation of genes from pigeonpea wild relatives in host plant resistance towards the pod borer assumes pertinence. Dynamic transcriptome analysis of the wild relative vis a vis cultivated pigeonpea identified a CHI4 chitinase as one of the putative insect resistance genes. RESULTS: The study presents variations in important amino acids in CHI4 chitinases from C. cajan and its wild relative C. platycarpus. Comparative protein modeling and docking analysis of the two proteins demonstrated differences in substrate binding efficacy of the chitinase from C. platycarpus which resulted in a minimum binding energy of -8.7 kcal mol-1 . Furthermore, we successfully evaluated the insecticidal activity of the chitinase from C. platycarpus against H. armigera challenge through heterologous expression in tobacco. Molecular characterization of transgenic plants confirmed that their efficacy against H. armigera was a result of the integration of CHI4 from C. platycarpus. CONCLUSION: Docking analysis demonstrated effective substrate interaction as a possible reason for efficacy against pod borer in the chitinase from C. platycarpus. This was authenticated by successful overexpression and bioefficacy assessment against H. armigera in tobacco. The CHI4 gene from C. platycarpus can be useful in the mitigation of H. armegira in pigeonpea as well as in other crops. © 2021 Society of Chemical Industry.


Assuntos
Cajanus , Quitinases , Mariposas , Animais , Cajanus/genética , Quitinases/genética , Perfilação da Expressão Gênica , Mariposas/genética , Plantas Geneticamente Modificadas/genética
20.
Dev Comp Immunol ; 113: 103808, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32738335

RESUMO

Chitinases are a group of chitin-degrading enzymes widely distributed in organisms. Chitinases containing two chitin catalytic domains have been widely found in arthropods but their functions remain unclear. In this study, a member of these chitinases from Litopenaeus vannamei (dChi) was identified and functionally studied in the context of immunity. The promoter of dChi contained activator protein 1 (AP-1) binding sites and could be regulated by c-Jun. The recombinant dChi protein showed no bacteriostatic activity in vitro but knockdown of dChi in vivo increased the mortality of shrimp and the bacterial load in tissues after Vibrio parahaemolyticus infection, suggesting that dChi could play a positive role in antibacterial responses. However, silencing of dChi expression significantly decreased the mortality of WSSV-infected shrimp and down-regulated the viral load in tissues, indicating that dChi could facilitate WSSV infection. We further demonstrated that dChi was involved in regulation of the bacterial phagocytosis of hemocytes and expression of a series of immune related transcription factors and antimicrobial peptides. These indicated that the roles of dChi in antibacterial responses and anti-WSSV responses in vivo could result from its regulatory effects on the immune system. Taken together, the current study suggests that double chitin catalytic domain-containing chitinases could be important players in immune regulation in crustaceans.


Assuntos
Proteínas de Artrópodes/metabolismo , Quitinases/metabolismo , Infecções por Vírus de DNA/imunologia , Penaeidae/imunologia , Vibrioses/imunologia , Vibrio parahaemolyticus/fisiologia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Carga Bacteriana , Domínio Catalítico/genética , Quitina/metabolismo , Quitinases/genética , Quitinases/imunologia , Inativação Gênica , Imunidade , Fagocitose , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Transcrição AP-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA